首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79979篇
  免费   6678篇
  国内免费   7062篇
化学   70843篇
晶体学   853篇
力学   3027篇
综合类   499篇
数学   4657篇
物理学   13840篇
  2023年   818篇
  2022年   1254篇
  2021年   1660篇
  2020年   2375篇
  2019年   2231篇
  2018年   2141篇
  2017年   2762篇
  2016年   3272篇
  2015年   2868篇
  2014年   3426篇
  2013年   6177篇
  2012年   4886篇
  2011年   4981篇
  2010年   4163篇
  2009年   5149篇
  2008年   4360篇
  2007年   4711篇
  2006年   4126篇
  2005年   3850篇
  2004年   3618篇
  2003年   2927篇
  2002年   2933篇
  2001年   2022篇
  2000年   1676篇
  1999年   1468篇
  1998年   1307篇
  1997年   1247篇
  1996年   1206篇
  1995年   1323篇
  1994年   1161篇
  1993年   909篇
  1992年   803篇
  1991年   731篇
  1990年   565篇
  1989年   525篇
  1988年   568篇
  1987年   529篇
  1986年   402篇
  1985年   390篇
  1984年   391篇
  1983年   186篇
  1982年   348篇
  1981年   295篇
  1980年   276篇
  1979年   262篇
  1978年   121篇
  1977年   76篇
  1976年   69篇
  1973年   40篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Notoginsenoside R1 (NGR1), a diagnostic protopanaxatriol‐type (ppt‐type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti‐inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1. A simple and sensitive ultra‐fast liquid chromatographic–tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose‐independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25–0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)‐notoginsenoside R2/20(S)‐notoginsenoside R2 and 20(R)‐ginsenoside Rh1/20(S)‐ginsenoside Rh1, with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)‐notoginsenoside R2, ginsenoside Rg1, ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.  相似文献   
72.
Tricaine methanesulfonate is one of most commonly used anesthetics in fish during blood sampling, artificial propagation and long‐distance transportation. In this study, an accurate method for the quantitative determination of tricaine in fish samples by a stable isotope dilution assay coupled with high‐performance liquid chromatography–triple quadrupole mass spectrometry was developed. Tricaine‐D5 was synthesized and used as an isotopically labeled internal standard for the determination of tricaine. The analytical performance of the method was validated for tricaine determination in marine fish and freshwater fish. The determination of tricaine was linear in the range of 2.0–200.0 μg L?1. The limit of detection and limit of quantitation for fish muscle tissues were 1.0 and 4.0 μg kg?1, respectively. Good recoveries were obtained in the range of 92.08–97.50%. The inter‐ and intra‐assay relative standard deviations (RSD values) were investigated, and the values were 0.39–3.01 and 0.85–2.77%, respectively. The values of CCα and CCβ were 10.21–10.43 and 10.42–10.87 μg kg?1, respectively. The clearance of MS‐222 from grass carp was further studied using our method. The results demonstrate that MS‐222 could be well absorbed and rapidly eliminated after bath administration.  相似文献   
73.
A composite of FeOOH nanocubes anchored on carbon ribbons has been synthesized and used as a cathode material for Li/O2 batteries. Fe2+ ion-exchanged resin serves as a precursor for both FeOOH nanocubes and carbon ribbons, which are formed simultaneously. The as-prepared FeOOH cubes are proposed to have a core–shell structure, with FeOOH as the shell and Prussian blue as the core, based on information from XPS, TEM, and EDS mapping. As a cathode material for Li/O2 batteries, FeOOH delivers a specific capacity of 14816 mA h g−1cathode with a cycling stability of 67 cycles over 400 h. The high performance is related to the low overpotential of the oxygen reduction/evolution reaction on FeOOH. The cube structure, the supporting carbon ribbons, and the -OOH moieties all contribute to the low overpotential. The discharge product Li2O2 can be efficiently decomposed in the FeOOH cathode after a charging process, leading to higher cycling stability. Its high activity and stability make FeOOH a good candidate for use in non-aqueous Li/O2 batteries.  相似文献   
74.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   
75.
The volume filling fraction dependence of the effective permittivity of the nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl embedded in different porous membranes and dispersed with aerosil nanoparticles was determined using broadband dielectric spectroscopy in the frequency range from 106 to 109 Hz. The experimental data were analyzed and compared with some existing theories based on the effective medium approximation and their modifications. The obtained effective permittivities as a function of the volume filling fraction lie between the lower limits of the Wiener and Hashin–Shtrikman bounds. The observed shift of the experimental points reflects the changes in the structure of the investigated composites.  相似文献   
76.
A high‐performance liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous quantification of morphine, morphine's major metabolites morphine‐3‐glucuronide and morphine‐6‐glucuronide, and clonidine, to support the pharmacokinetic analysis of an ongoing double‐blinded randomized clinical trial that compares the use of morphine and clonidine in infants diagnosed with neonatal abstinence syndrome. Plasma samples were processed by solid‐phase extraction and separated on an Inertsil ODS‐3 (4 μm) column using an 0.1% formic acid in water–0.1% formic acid in methanol gradient. Detection of the analytes was conducted in the positive multiple reaction monitoring mode. The range of quantitation was 1–1000 ng/mL for morphine, morphine‐3‐glucuronide and morphine‐6‐glucuronide, and 0.25–100 ng/mL for clonidine. Intra‐day and inter‐day accuracy and precision were ≤15% for all analytes across the quantitation range. Extraction recovery rates were ≥94% for morphine, ≥90% for M3G, ≥87% for M6G and ≥ 79% for clonidine. Matrix effect ranged from 85–94% for clonidine to 101–106% for M3G. The method fulfilled all predetermined acceptance criteria and required only 100 μL of starting plasma volume. Furthermore, it was successfully applied to 30 clinical trial plasma samples.  相似文献   
77.
78.
79.
Mass spectrometry (MS) driven metabolomics is a frequently used tool in various areas of life sciences; however, the analysis of polar metabolites is less commonly included. In general, metabolomic analyses lead to the detection of the total amount of all covered metabolites. This is currently a major limitation with respect to metabolites showing high turnover rates, but no changes in their concentration. Such metabolites and pathways could be crucial metabolic nodes (e.g., potential drug targets in cancer metabolism). A stable-isotope tracing capillary electrophoresis–mass spectrometry (CE-MS) metabolomic approach was developed to cover both polar metabolites and isotopologues in a non-targeted way. An in-house developed software enables high throughput processing of complex multidimensional data. The practicability is demonstrated analyzing [U-13C]-glucose exposed prostate cancer and non-cancer cells. This CE-MS-driven analytical strategy complements polar metabolite profiles through isotopologue labeling patterns, thereby improving not only the metabolomic coverage, but also the understanding of metabolism.  相似文献   
80.
Accurate diagnosis of tumor characteristics, including its location and boundary, is of immense value to subsequent therapy. Activatable magnetic resonance imaging (MRI) contrast agents that respond to tumor-specific microenvironments, such as the redox state, pH, and enzyme activity, enable better mapping of tumor tissue. However, the practical application of most reported activatable agents is hampered by problems including potential toxicity, inefficient elimination, and slow activation. In this study, we developed a zwitterionic iron complex (Fe-ZDS) as a positive MRI contrast agent for tumor-specific imaging. Fe-ZDS could dissociate in weakly acidic solution rapidly, accompanied by clear longitudinal relaxivity (r1) enhancement, which enabled the complex to act as a pH-sensitive contrast agent for tumor-specific MR imaging. In vivo experiments showed that Fe-ZDS rapidly enhanced the tumor-to-normal contrast ratio by >40 %, which assisted in distinguishing the tumor boundary. Furthermore, Fe-ZDS circulated freely in the bloodstream and was excreted relatively safely via kidneys owing to its zwitterionic nature. Therefore, Fe-ZDS is an ideal candidate for a tumor-specific MRI contrast agent and holds considerable potential for clinical translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号